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For interpolation of smooth functions by smooth kernels having an expansion
into eigenfunctions (e.g., on the circle, the sphere, and the torus), good results
including error bounds are known, provided that the smoothness of the function is
closely related to that of the kernel. The latter fact is usually quantified by the
requirement that the function should lie in the ‘‘native’’ Hilbert space of the kernel,
but this assumption rules out the treatment of less smooth functions by smooth
kernels. For the approximation of functions from ‘‘large’’ Sobolev spaces W by
functions generated by smooth kernels, this paper shows that one gets at least the
known order for interpolation with a less smooth kernel that has W as its native
space. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let {jj(x)}j ¥I be a complex-valued orthonormal basis of L2(W), where
I is a countable index set, W is a bounded domain in Rn, or a compact
n-dimensional Riemannian manifold [5]; the n-sphere Sn and the n-torus
Tn are manifolds of special interest.
Expansions of functions f ¥ L2(W) with respect to {jj(x)}j ¥I will be

written as

f=C
j ¥I

f̂(j) jj, f̂(j) :=(f, jj)2. (1)

The symbols c and C will stand for generic constants. We also wish to
define Sobolev-type subspaces Sw of L2(W). We let

Sw :=3f=C
j ¥I

f̂(j) jj, ||f||
2
w :=C

j ¥I

|f̂(j)|2

wj
<.4 (2)

for any sequence w={wj}j ¥I of positive weights. Of course, for the
underlying manifolds involved, the Sobolev spaces are defined in the same
way, but with special weights depending on an order s, see (20) and (25).
However, to avoid possible confusion, we will write Ws for the usual order
s Sobolev space.
We shall study approximation of functions f ¥ L2(W) by linear combi-

nations of functions F( · , y), where y ¥ W and F: W×WQ R is a symmetric
positive definite kernel (see, e.g., [5, 6, 7]) having an expansion

F(x, y) :=C
j ¥I

F̂(j) jj(x) jj(y) (3)

with the coefficients F̂(j) being strictly positive. Such a framework may be
viewed as the natural analogue in W of RBF approximation on all of Rd.
The smoothness of the kernel and the summability of the above series is
usually controlled by conditions on the decay of F̂(j) of the form

c || j ||−y [ F̂(j) [ C ||j ||−y (4)

for || j ||Q., where || j || will be a norm on the index set. The precise
inequalities in (4) will be provided later in specific cases.
We call a kernel of the form (3) admissible, if the sequence {F̂(j)}j ¥I

satisfies

C
j
F̂(j) |jj(x)|2 [ C <.
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for all x ¥ W. According to the overview given in [7], there are many
admissible kernels arising from positive integral operators

vW F
W

v(x) F( · , x) dx (5)

having {jj}j ¥I as a complete orthonormal set of eigenfunctions with
eigenvalues F̂(j).
Any admissible kernel generates a Hilbert subspace SF̂ of L2(W), called

the native space for F, by (2) for the special weights wj=F̂(j). There is a
well-developed theory for interpolation of functions f in the native space
(see [1, 2, 5] for the torus and the sphere), but for smooth kernels F one
usually has fast decay of the eigenvalues F̂(j) of the positive integral
operator (5) leading to an undesirably small native space in which inter-
polation is known to work well. To overcome this drawback, this paper
treats the approximation of functions f from fixed large Sobolev-type
spaces Sw via sufficiently smooth kernels F of the above form. The final
goal of this paper is to prove that the approximation quality is the same as
it is for interpolation in the space Sw itself, if we reinterpret this space as a
native space Sw=SŶ for a much less smooth, but still admissible kernel Y.
In particular, we want to consider approximations of functions f from
Sobolev spaces Ws by functions F with the decay conditions (4) for s < y,
and we want to obtain at least the approximation power that is attainable
for interpolation in Ws.

2. METHOD OF APPROXIMATION

In this section, we describe the approach taken to obtain the desired
rates of approximation. Recall that we wish to approximate a function f of
the form (1) from a Sobolev-type subspace Sw … L2(W) as defined in (2).
Since we intend to use interpolation by a smooth kernel F whose native
space SF̂ does not contain Sw, we look for an intermediate approximation
that lies in the native space SF̂. A natural candidate is a ‘‘cut-off ’’ function
of the form

fL := C
j ¥IL

f̂(j) jj, (6)

where IL is a sequence of finite subsets of I constructed so that IL …IL+1

and 1L IL=I. The IL’s will depend on specifics of the case being treated.
After we choose the IL’s, our first step will be to derive error bounds of

the form

||f−fL ||., W [ a(L, w) ||f||w (7)
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for the truncation error f−fL. When, in particular, the weights w(j) are
those of a Sobolev space Ws, then we expect that asymptotically

a(L, w)=O(Ln/2−s), (8)

where n is the dimension of W.
As a second step, we interpolate fL at a finite number of scattered points

X :={x1, ..., xN} ¥ W by a function IF, X(fL). The set X has an associated
mesh norm (or ‘‘fill distance’’)

h :=max
y ¥ W

min
x ¥ X

dist(x, y),

where dist(x, y) is the distance between x and y relative to the metric on W.
There is a connection between h and the cardinality of X for sets in

which the points are quasi-uniformly distributed; that is, the smallest
nearest-neighbor distance between points in X is comparable to the largest
nearest-neighbor distance. Such sets are optimal in the sense that they have
the smallest cardinality compatible with a given mesh norm, and it is easy
to show that they satisfy card(X)=O(h−n), where n is the dimension of W.
The standard error bounds for this interpolation process have the form

||fL −IF, X(fL)||., W [ b(h, F) ||fL ||F, 1 [ p [., (9)

where again for purposes of illustration, we assume

b(h, F)=O(hy−n/2) for h a 0 (10)

in case of a kernel F satisfying (4), and where n is the dimension of W. We
shall comment on special instances of these results later.
As a third and final step one needs to estimate ||fL ||F appearing in (9).

We derive the following ‘‘inverse’’ bound,

||fL ||
2
F= C

j ¥IL

|f̂(j)|2

F̂(j)

[ ||f||2w max
j ¥IL

wj

F̂(j)

=: ||f||2w c
2(L, w, F). (11)

For the examples we have in mind, suitable bounds for c will be of the
form

c(L, w, F)=O(Ly−s) for LQ. (12)

in case of weights w coming from a Sobolev space Ws, and if F̂ satisfies (4)
with s < y.
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Thus, the approximation scheme yields the error estimate

||f−IF, X(fL)||., W [ ||f−fL ||., W+||fL −IF, X(fL)||., W

[ a(L, f, w) ||f||w+b(h, F) ||fL ||F

[ (a(L, f, w)+c(L, w, F) b(h, F)) ||f||w. (13)

Next, one needs to choose L in terms of h so as to let the two inner terms
appearing in (13) have the same asymptotics for h a 0, namely

a(L, f, w) % c(L, w, F) b(h, F). (14)

For the case where w comes from a space Ws, and if F̂ satisfies (4), then by
(8), (10), and (12) we see that the quantity ||f−IF, X(fL)||., W behaves like

Ln/2−s+Ly−shy−n/2

and so it is clear that L must grow inversely proportional to h to ensure
(14). The O relations in most of the paper are thus to be understood for
L ‘. and h a 0, respectively. Finally, substituting C

h for L yields the
asymptotic error estimate

||f−IF, X(fL)||., W=O(hs−n/2) ||f||w.

The net result is that the quasi-interpolation scheme described above gives
rise to an approximation error comparable to the approximation error
resulting from interpolating f by a ‘‘rough’’ kernel k having native space
Ws and acting on a manifold of dimension n. In the next two sections, we
will apply these ideas to the n- sphere and n-torus.

3. ERROR ESTIMATES FOR INTERPOLATION

In this section, we quantify the error estimates for interpolation on the
n-torus and n-sphere Sn :={v ¥ Rn+1 : ||v||2=1}.

3.1. The n-Sphere

We deal with this case first since the results needed essentially have
already been obtained in [2] with an improvement from [3]. The kernels
considered here have the form

F(p, q)=C
.

a=0
C

N(n, a)

k=1
F̂(a, k) Ya, k(p) Ya, k(q), p, q ¥ Sn, F̂(a, k) > 0,

(15)
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where the Ya, k’s are spherical harmonics of order a, and

N(n, a)=
2a+n−1
a

Ra+n−2

a−1
S=O(an−1) for a \ 1.

The spherical harmonic Ya, k is an eigenfunction of the Laplace–Beltrami
operator on Sn corresponding to the eigenvalue la=a(a+n−1), a \ 0. The
set {Ya, k}

N(a, n)
k=1 is chosen to be an orthonormal basis for Ea, the eigenspace

of the Laplace–Beltrami operator on Sn corresponding to the eigenvalue la.
Collectively, the Ya, k’s form an orthonormal basis for L2(Sn). For such
kernels, we have the following useful distance estimates, which were
established in [2] with an improvement in [3].

Proposition 3.1. Let X be any point set on Sn with mesh norm h, and let
F be as in (15). If for some a > 1 we have

F̂(a) N(n, a) [ c1(1+a)−a, where F̂(a) := max
1 [ k [ N(n, a)

F̂(a, k),

then

||f−IF, X(f)||2., W [ Cha−1 ||f||2F,

for all f in the native space for F, and where the constant C is independent
of X.

Proof. The estimate given above is essentially the one found in
[2, Corollary 2], except that the ‘‘M’’ there is replaced by a constant
(cf. [3, Remark 11]). Also, (1+L) is replaced by the reciprocal of the mesh
norm h. L

Corollary 3.2. Let X be any point set on Sn with mesh norm h. If
F̂(a)=O( 1

a
2y) for some y > n

2 and aQ., then

||f−IF, X(f)||., W=O(hy−n/2) ||f||F.

Proof. Since N(n, a)=O(an−1), we have that

F̂(a) N(n, a)=O(an−1−2y), aQ..

Apply Proposition 3.1, with a=2y+1−n, and then take squares roots of
both sides to obtain the desired estimate. L

3.2. The n-Torus

The case of the n-torus Tn has been touched on in [1], but not in the
generality we require. To handle it, we will use an approach that is similar
to the one used in [2] to establish results for the sphere.
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The eigenfunctions for Tn are jk(x)=(2p)−n/2 exp(ik ·hx), where k ¥ Zn

is a multi-index and hx is a vector of n angular coordinates for x. The
admissible kernels F(x, y) in (3) are the ones that satisfy ; k ¥ Z

n F̂(k) <..
We begin with the following result, which is essentially from [1].

Proposition 3.3. Let F(x, y) be an admissible kernel on Tn, ||f||F <.,
M be a positive integer, and let X={x1, ..., xN} be a given knot set. If for
each fixed x ¥ Tn there are coefficients c1, ..., cN such that

jk(x)=C
N

j=1
cjjk(xj), ||k||. [M, (16)

and if there is a sequence bk < 0, ||k||.=M+1, ..., for which

:jk(x)− C
N

j=1
cjjk(xj) :

2

[ bk

holds uniformly in x, then

|f(x)−IF, X(f)(x)| [ ||f||F 1 C
||k||. > M

F̂(k) bk
21/2

. (17)

Proof. The result is a special case of Propositions 3.6 and Theorem 3.8
in [1]. In both results, the set of distributions {uj} is taken to be the set of
point evaluations {dxj

}. We remark that the estimate in (17) actually comes
from an intermediate step in the proof of Theorem 3.8. L

In the case of Tn, the eigenfunctions obviously do not decay at all.
Consequently, we cannot expect to find bk’s that decay, and so the best
bound we can hope for in (17) will come about if we can bound the bk’s
uniformly in k ¥ Zn. For obtaining such a bound, it suffices to show that
we can find cj’s satisfying (16) and having ||c||a1=; j |cj | bounded uni-
formly in x, N, and M. In [2], the notion of norming set was used to solve
an analogous problem. We will need it here as well.

Definition 3.4. Let V be a normed linear space with dual V*. Given
two subspaces W … V and Z … V*, the set Z is called a norming set of W if
there exists some c > 0 so that

sup
z ¥ Z, ||z||=1

|z(w)| \ C ||w|| for all w ¥W.
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Let us specialize this to our situation. We take V … C(Tn) to be the set of
all multivariate trigonometric polynomials P of the form

P(x)= C
k ¥ Z

n, ||k||. [ M
ak exp(ik ·hx),

where hx is an n-tuple of angles corresponding to x ¥ Tn. The linear func-
tionals in Z are point evaluations at the knots. That is, Z={dxj

}j=1, ..., N.

Lemma 3.5. If the knot set X has mesh norm h [ 1/2`n M, then Z is a
norming set and

||P|X ||. \ 1
2 ||P||..

Proof. We will work in periodic coordinates, regarding x and hx as
being the same. Use the multivariate mean value theorem for scalar-valued
functions to write the difference P(x)−P(y) as

P(x)−P(y)=NP(x̃) · (x−y),

where x̃ is a point on the shorter of the lines joining x and y. We next
estimate the norm of NP via Bernstein’s univariate inequality applied to
each of the n variables separately:

sup
x ¥ T

n
||NP(x)||a2 [ 1 C

n

a=1
||“aP||

2
.
21/2

[ 1 C
n

a=1
M2 ||P||2. 2

1/2

[`n M ||P||..

If ||x−y||2 [ h, then by this inequality and the previous formula we obtain

|P(x)−P(y)| [`n Mh ||P||.

Suppose that y is the point at which P attains its maximum; that is,
||P||.=|P(y)|. The mesh norm for X is h; there is thus an xj ¥X for which
||xj −y||2 [ h [ 1/(2`n M). Consequently,

||P||. [ |P(xj)|+
1
2 ||P||. [ ||P|X ||.+

1
2 ||P||..

Bringing 1
2 ||P||. over to left-hand side of this inequality yields the result. L

Proposition 3.3 and Lemma 3.5 provide the following estimate.
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Theorem 3.1. If the knot set X has mesh norm h [ 1/(2`n M), then

||f−IF, X(f)||. [ 3(2p)−n/2 ||f||F 1 C
||k||. > M

F̂(k)2
1/2

. (18)

Proof. Lemma 3.5 allows us to apply the argument in [2] verbatim to
show that there exist cj’s that satisfy (16) and ;N

j=1 |cj | [ 2. From this, it
follows that when ||k||. >M,

:jk(x)− C
N

j=1
cjjk(xj) :

2

[ (2p)−n (1+2)2=9(2p)−n=: bk.

The estimate (18) then follows from Proposition 3.3. L

We conclude with a result for Tn analogous to Corollary 3.2 for the
n-sphere.

Corollary 3.6. Let X be any point set on Tn with mesh norm h, and let
y > T > n/2. If F̂(k)=O(||k||−2y

2 ), then ||f−IF, X(f)||.=O(hy−n/2) ||f||F.

Proof. If M=K(2`n h)−1L is sufficiently large, then there is a positive
constant C such that ; ||k||. > M F̂(k) [ C; ||k||. > M ||k||−2y

2 . If we set

N(n, a) :=card{k ¥ Zn : a [ ||k||2 [ a+1},

then we have

C
.

||k||. > M
F̂(k) [ C C

.

a=M+1
a

−2yN(n, a).

It is easy to show that N(n, a)=O(an−1). Using this and h ’M−1 in the
previous inequality we arrive at

C
.

||k||. > M
F̂(k) [ C C

.

a=M+1
a

n−1−2y=O(Mn−2y)=O(h2y−n).

Taking square roots then yields (;.

||k||. > M F̂(k))
1/2=O(hy−n/2). The result

then follows on inserting this in the estimate in Theorem 3.1. L

We remark that if X is quasi-uniformly distributed with mesh norm h,
then

N=card(X)=O(1/h)n.

Thus, in such cases one may rephrase the results above in terms of N.
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4. APPROXIMATION ON THE SPHERE AND TORUS

We deal first with the case of the n-sphere. Here, the orthonormal system
is based on spherical harmonics, and will be denoted by {Ya, m} [4, 8]. A
function f in L2(Sn) has the expansion

f=C
.

a=0
C

N(n, a)

m=1
f̂(a, m) Ya, m

z
Paf

The truncated version of f is fL=;L
a=0 Paf. We want to estimate

||f−fL ||..
We will start by estimating the L.(Sn) norm of the projection Paf.

From the addition theorem for spherical harmonics [4, 8], we have

C
N(n, a)

m=1
|Ya, m(x)|2=

N(n, a)
wn

Pa(n+1; 1)=
N(n, a)
wn

,

where Pa(n+1; · ) is the Legendre polynomial of degree a in n+1 dimen-
sions, normalized by Pa(n+1; 1)=1 (cf. [4]) and wn denotes the surface
area of Sn. Using this, we get the following bound,

||Paf||.=max
x ¥ S

n
: C

N(n, a)

m=1
f̂(a, m) Ya, m(x) :

[ 1 C
N(n, a)

m=1
|f̂(a, m)|22

1/2

max
x ¥ S

n
1 C

N(n, a)

m=1
|Ya, m(x)|22

1/2

[ ||Paf||2 =
N(n, a)
wn

,

from which it easily follows that

||f−fL ||. [ C
.

a=L+1
||Paf||2 =

N(n, a)
wn

. (19)

If f belongs to Sobolev space Ws for the n-sphere, then

||f||2Ws :=C
.

a=0
(1+la)s ||Paf||

2
2 <., (20)

where la=a(a+n−1) is an eigenvalue of the Laplace–Beltrami operator
for Sn. Consequently, for f ¥Ws, we can use the Cauchy–Schwarz
inequality and (19) to get
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||f−fL ||. [ 1 C
.

a=L+1
(1+la)s ||Paf||

2
2
21/2 1 C

.

a=L+1

N(n, a)
wn(1+la)s
21/2

[ C ||f||Ws 1 C
.

a=L+1
a

n−1−2s21/2

[ L
n
2 −sC ||f||Ws ,

so that

||f−fL ||.=O(L
n
2 −s) ||f||Ws . (21)

Thus a in (7) satisfies a=O(L
n
2 −s).

We now turn to bounding the F-norm in terms of the Sobolev norm.
The kernel F(x, y) has the expansion

F(x, y)=C
.

a=0
C

N(n, a)

m=1
F̂(a, m) Ya, m(x) Ya, m(y),

where F̂(a, m) > 0. The decay conditions (4) are now just

c(1+la)−y [ F̂(a, m) [ C(1+la)−y, (22)

and the ‘‘inverse’’ bound in this case is derived via

||fL ||
2
F :=C

L

a=0
C

N(n, a)

m=1

|f̂(a, m)|2

F̂(a, m)

[ c−1 C
L

a=0
(1+la)y−s (1+la)s ||Paf||

2
2

[ sup
0 [ a [ L

((1+la))y−s ||fL ||
2
Ws

=O(L2(y−s)) ||fL ||
2
Ws . (23)

The quantity c defined in (11) is thus seen to satisfy c=O(Ly−s). Recalling
Corollary 3.2, we have (under the conditions assumed there) that

||fL −IF, X(fL)||., W=O(hy−n/2) ||fL ||F :=b(h, F) ||fL ||F. (24)

From (14), we wish to relate L with h so that

a(L, f, s) % c(L, s, F) b(h, F).

Inserting the appropriate quantities from (21), (23), and (24) we get the
requirement

L
n
2 −s % Ly−shy−n/2.
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Clearly choosing L=O(h−1) establishes the equivalence with the conver-
gence rate being hs−n/2. We summarize the n-sphere result as follows.

Theorem 4.1. Let f ¥Ws(Sn), F ¥Wy(Sn), and let the finite point set
X … Sn have mesh norm h. If F̂ satisfies (22) with y > s, then

dist., Sn(f, Span
x ¥ X

{F( · , x)}) [ C(hs−n/2) ||f||s,

where C is independent of card(X). Moreover, an approximant to f is given
by IF, X(fL) where L=O(h−1).

We now turn to approximation on the n-torus. For f ¥ Tn, the appro-
priate Sobolev spaces are

Ws=3f ¥ Tn : C
j ¥ Zn

(1+||j ||22)
s |f̂(j)|2 <.4 . (25)

Our cut-off approximant to a given f has the form

fL(x) := C
|| j ||. [ L

f̂(j) e j · x.

We can thus estimate the approximation error as

||f−fL ||., W [ C
|| j ||. > L

1
(1+||j ||22)

s/2 (1+||j ||22)
s/2 |f̂(j)|

[ 1 C
|| j ||. > L

1
(1+||j ||22)

s
21/2 1 C

j ¥ Zn
(1+||j ||22)

s |f̂(j)|22
1/2

[ 1 C
.

r=L
C

{j ¥ Zn : r < ||j ||. [ r+1}

1
(1+||j ||22)

s
21/2

||f||W2, s

[ 1 C
.

r=L

crn−1

(1+r2)s
21/2

||f||W2, s
[ CL

n
2 −s ||f||W2, s

.

From this we see that the bound in (7) holds, with a satisfying

a=O(L
n
2 −s). (26)

We now turn to computing the quantity c given in the inverse bound
from Eq. (11). Since IL={j ¥ Zn : || j ||. [ L}, we have

c :=1 sup
|| j ||. [ L

1

F̂(j)(1+||j ||22)
s

21/2

.
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If we assume that the F̂’s satisfy the bounds

c1

(1+||j ||22)
y
[ F̂(j) [

c2

(1+||j ||22)
y
, where y \ s, (27)

we then have that

c2 [ C sup
|| j ||. [ L

(1+||j ||22)
y−s [ CL2(y−s),

so that

c=O(Ly−s). (28)

We will now derive approximation rates for Tn similar to those derived
for Sn.

Theorem 4.2. Let f ¥Ws(Tn), F ¥Wy(Tn), and let the finite point set
X … Tn have mesh norm h. If F̂ satisfies (27) with y > s, then

dist., Tn(f, Span
x ¥ X

{F( · , x)}) [ C(hs−n/2) ||f||s,

where C is independent of card(X). Moreover, an approximant to f is given
by IF, X(fL) where L=O(h−1).

Proof. Note that the assumptions of Corollary 3.6 hold; consequently,
we have that

||fL −IF, X(fL)||.=O(hy−n/2) ||fL ||F

:=b(h, F) ||fL ||F. (29)

Recall that in the argument sketched in Section 2, we obtained approxima-
tion rates using by choosing L be an appropriate function of the mesh
norm h. In the case at hand, a, b, and c are given by (26), (29), and (28),
respectively. By the argument from Section 2, taking L=O(h−1) then gives
convergence rates on the order of hs−n/2. L
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